\(\int \frac {1}{(a-i a x)^{15/4} (a+i a x)^{7/4}} \, dx\) [1205]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F(-2)]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 147 \[ \int \frac {1}{(a-i a x)^{15/4} (a+i a x)^{7/4}} \, dx=-\frac {2 i}{11 a^2 (a-i a x)^{11/4} (a+i a x)^{3/4}}-\frac {2 i}{11 a^3 (a-i a x)^{7/4} (a+i a x)^{3/4}}+\frac {10 x}{33 a^4 (a-i a x)^{3/4} (a+i a x)^{3/4}}+\frac {10 \left (1+x^2\right )^{3/4} \operatorname {EllipticF}\left (\frac {\arctan (x)}{2},2\right )}{33 a^4 (a-i a x)^{3/4} (a+i a x)^{3/4}} \]

[Out]

-2/11*I/a^2/(a-I*a*x)^(11/4)/(a+I*a*x)^(3/4)-2/11*I/a^3/(a-I*a*x)^(7/4)/(a+I*a*x)^(3/4)+10/33*x/a^4/(a-I*a*x)^
(3/4)/(a+I*a*x)^(3/4)+10/33*(x^2+1)^(3/4)*(cos(1/2*arctan(x))^2)^(1/2)/cos(1/2*arctan(x))*EllipticF(sin(1/2*ar
ctan(x)),2^(1/2))/a^4/(a-I*a*x)^(3/4)/(a+I*a*x)^(3/4)

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 147, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {53, 42, 205, 239, 237} \[ \int \frac {1}{(a-i a x)^{15/4} (a+i a x)^{7/4}} \, dx=\frac {10 \left (x^2+1\right )^{3/4} \operatorname {EllipticF}\left (\frac {\arctan (x)}{2},2\right )}{33 a^4 (a-i a x)^{3/4} (a+i a x)^{3/4}}+\frac {10 x}{33 a^4 (a-i a x)^{3/4} (a+i a x)^{3/4}}-\frac {2 i}{11 a^3 (a-i a x)^{7/4} (a+i a x)^{3/4}}-\frac {2 i}{11 a^2 (a-i a x)^{11/4} (a+i a x)^{3/4}} \]

[In]

Int[1/((a - I*a*x)^(15/4)*(a + I*a*x)^(7/4)),x]

[Out]

((-2*I)/11)/(a^2*(a - I*a*x)^(11/4)*(a + I*a*x)^(3/4)) - ((2*I)/11)/(a^3*(a - I*a*x)^(7/4)*(a + I*a*x)^(3/4))
+ (10*x)/(33*a^4*(a - I*a*x)^(3/4)*(a + I*a*x)^(3/4)) + (10*(1 + x^2)^(3/4)*EllipticF[ArcTan[x]/2, 2])/(33*a^4
*(a - I*a*x)^(3/4)*(a + I*a*x)^(3/4))

Rule 42

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(m_), x_Symbol] :> Dist[(a + b*x)^FracPart[m]*((c + d*x)^Frac
Part[m]/(a*c + b*d*x^2)^FracPart[m]), Int[(a*c + b*d*x^2)^m, x], x] /; FreeQ[{a, b, c, d, m}, x] && EqQ[b*c +
a*d, 0] &&  !IntegerQ[2*m]

Rule 53

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 205

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^n)^(p + 1)/(a*n*(p + 1))), x] + Dist[(n*(p
 + 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (
IntegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[
p])

Rule 237

Int[((a_) + (b_.)*(x_)^2)^(-3/4), x_Symbol] :> Simp[(2/(a^(3/4)*Rt[b/a, 2]))*EllipticF[(1/2)*ArcTan[Rt[b/a, 2]
*x], 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]

Rule 239

Int[((a_) + (b_.)*(x_)^2)^(-3/4), x_Symbol] :> Dist[(1 + b*(x^2/a))^(3/4)/(a + b*x^2)^(3/4), Int[1/(1 + b*(x^2
/a))^(3/4), x], x] /; FreeQ[{a, b}, x] && PosQ[a]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 i}{11 a^2 (a-i a x)^{11/4} (a+i a x)^{3/4}}+\frac {7 \int \frac {1}{(a-i a x)^{11/4} (a+i a x)^{7/4}} \, dx}{11 a} \\ & = -\frac {2 i}{11 a^2 (a-i a x)^{11/4} (a+i a x)^{3/4}}-\frac {2 i}{11 a^3 (a-i a x)^{7/4} (a+i a x)^{3/4}}+\frac {5 \int \frac {1}{(a-i a x)^{7/4} (a+i a x)^{7/4}} \, dx}{11 a^2} \\ & = -\frac {2 i}{11 a^2 (a-i a x)^{11/4} (a+i a x)^{3/4}}-\frac {2 i}{11 a^3 (a-i a x)^{7/4} (a+i a x)^{3/4}}+\frac {\left (5 \left (a^2+a^2 x^2\right )^{3/4}\right ) \int \frac {1}{\left (a^2+a^2 x^2\right )^{7/4}} \, dx}{11 a^2 (a-i a x)^{3/4} (a+i a x)^{3/4}} \\ & = -\frac {2 i}{11 a^2 (a-i a x)^{11/4} (a+i a x)^{3/4}}-\frac {2 i}{11 a^3 (a-i a x)^{7/4} (a+i a x)^{3/4}}+\frac {10 x}{33 a^4 (a-i a x)^{3/4} (a+i a x)^{3/4}}+\frac {\left (5 \left (a^2+a^2 x^2\right )^{3/4}\right ) \int \frac {1}{\left (a^2+a^2 x^2\right )^{3/4}} \, dx}{33 a^4 (a-i a x)^{3/4} (a+i a x)^{3/4}} \\ & = -\frac {2 i}{11 a^2 (a-i a x)^{11/4} (a+i a x)^{3/4}}-\frac {2 i}{11 a^3 (a-i a x)^{7/4} (a+i a x)^{3/4}}+\frac {10 x}{33 a^4 (a-i a x)^{3/4} (a+i a x)^{3/4}}+\frac {\left (5 \left (1+x^2\right )^{3/4}\right ) \int \frac {1}{\left (1+x^2\right )^{3/4}} \, dx}{33 a^4 (a-i a x)^{3/4} (a+i a x)^{3/4}} \\ & = -\frac {2 i}{11 a^2 (a-i a x)^{11/4} (a+i a x)^{3/4}}-\frac {2 i}{11 a^3 (a-i a x)^{7/4} (a+i a x)^{3/4}}+\frac {10 x}{33 a^4 (a-i a x)^{3/4} (a+i a x)^{3/4}}+\frac {10 \left (1+x^2\right )^{3/4} F\left (\left .\frac {1}{2} \tan ^{-1}(x)\right |2\right )}{33 a^4 (a-i a x)^{3/4} (a+i a x)^{3/4}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.02 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.48 \[ \int \frac {1}{(a-i a x)^{15/4} (a+i a x)^{7/4}} \, dx=-\frac {i \sqrt [4]{2} (1+i x)^{3/4} \operatorname {Hypergeometric2F1}\left (-\frac {11}{4},\frac {7}{4},-\frac {7}{4},\frac {1}{2}-\frac {i x}{2}\right )}{11 a^2 (a-i a x)^{11/4} (a+i a x)^{3/4}} \]

[In]

Integrate[1/((a - I*a*x)^(15/4)*(a + I*a*x)^(7/4)),x]

[Out]

((-1/11*I)*2^(1/4)*(1 + I*x)^(3/4)*Hypergeometric2F1[-11/4, 7/4, -7/4, 1/2 - (I/2)*x])/(a^2*(a - I*a*x)^(11/4)
*(a + I*a*x)^(3/4))

Maple [F]

\[\int \frac {1}{\left (-i a x +a \right )^{\frac {15}{4}} \left (i a x +a \right )^{\frac {7}{4}}}d x\]

[In]

int(1/(a-I*a*x)^(15/4)/(a+I*a*x)^(7/4),x)

[Out]

int(1/(a-I*a*x)^(15/4)/(a+I*a*x)^(7/4),x)

Fricas [F]

\[ \int \frac {1}{(a-i a x)^{15/4} (a+i a x)^{7/4}} \, dx=\int { \frac {1}{{\left (i \, a x + a\right )}^{\frac {7}{4}} {\left (-i \, a x + a\right )}^{\frac {15}{4}}} \,d x } \]

[In]

integrate(1/(a-I*a*x)^(15/4)/(a+I*a*x)^(7/4),x, algorithm="fricas")

[Out]

1/33*(33*(a^6*x^4 + 2*I*a^6*x^3 + 2*I*a^6*x - a^6)*integral(5/33*(I*a*x + a)^(1/4)*(-I*a*x + a)^(1/4)/(a^6*x^2
 + a^6), x) + 2*(5*x^3 + 10*I*x^2 - 2*x + 6*I)*(I*a*x + a)^(1/4)*(-I*a*x + a)^(1/4))/(a^6*x^4 + 2*I*a^6*x^3 +
2*I*a^6*x - a^6)

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(a-i a x)^{15/4} (a+i a x)^{7/4}} \, dx=\text {Timed out} \]

[In]

integrate(1/(a-I*a*x)**(15/4)/(a+I*a*x)**(7/4),x)

[Out]

Timed out

Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{(a-i a x)^{15/4} (a+i a x)^{7/4}} \, dx=\text {Exception raised: RuntimeError} \]

[In]

integrate(1/(a-I*a*x)^(15/4)/(a+I*a*x)^(7/4),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is undefined.

Giac [F(-2)]

Exception generated. \[ \int \frac {1}{(a-i a x)^{15/4} (a+i a x)^{7/4}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(1/(a-I*a*x)^(15/4)/(a+I*a*x)^(7/4),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:The choice was done assuming 0=[0,0]ext_reduce Error: Bad Argument TypeDone

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a-i a x)^{15/4} (a+i a x)^{7/4}} \, dx=\int \frac {1}{{\left (a-a\,x\,1{}\mathrm {i}\right )}^{15/4}\,{\left (a+a\,x\,1{}\mathrm {i}\right )}^{7/4}} \,d x \]

[In]

int(1/((a - a*x*1i)^(15/4)*(a + a*x*1i)^(7/4)),x)

[Out]

int(1/((a - a*x*1i)^(15/4)*(a + a*x*1i)^(7/4)), x)